See on Scoop.itEdgar Analytics & Complex Systems

In the last 15 years, the collective motion of large numbers of self-propelled objects has become an increasingly active area of research. The examples of such collective motion abound: flocks of birds, schools of fish, swarms of insects, herds of animals etc. Swarming of living creatures is believed to be critical for the population survival under harsh conditions. The ability of motile microorganisms to communicate and coordinate their motion leads to the remarkably complex self-organized structures found in bacterial biofilms. Active intracellular transport of biological molecules within the cytoskeleton has a profound effect on the cell cycle, signaling and motility. In recent years, significant progress has also been achieved in the design of synthetic self-propelled particles. Their collective motion has many advantages for performing specific robotic tasks, such as collective cargo delivery or harvesting the mechanical energy of chaotic motion.

(…)

In this focus issue we have tried to assemble papers from leading experts which we hope will provide a current snapshot of this young and rapidly expanding field of research. They cover both theoretical and experimental investigations of the dynamics of active matter on different spatial and temporal scales.

 

Focus on Swarming in Biological and Related Systems
Lev Tsimring, Hugues Chate, Igor Aronson

2014 New J. Phys. 16

http://iopscience.iop.org/1367-2630/focus/Focus%20on%20Swarming%20in%20Biological%20and%20Related%20Systems

See on iopscience.iop.org

Advertisements